
Computational Molecular Biology

Last updated: November 27, 2023

Hello! These lecture notes were originally created during the
2018 iteration of CS 181 (Computational Molecular Biology)
taught at Brown University by Sorin Istrail. The original notes
were provided by Shivam Nadimpalli, and future updates have
been made by course TAs including Elliot Youth, Daniel Ben-
Isvy, Sam Maffa, Iris Huang, and Hannah Beakley. Please email
any comments or typos to cs1810tas@lists.brown.edu.

1

mailto:cs1810tas@lists.brown.edu

Contents

1 Sequence Alignment 3
1.1 Global Alignment . 3
1.2 Local Alignment . 9
1.3 Alignment with Gaps . 11
1.4 Statistics and Alignment . 15
1.5 Connections with Graph Theory . 17

2 Combinatorial Pattern Matching 19
2.1 Finite Automata and Regular Expressions . 20
2.2 The Knuth-Morris-Pratt Algorithm . 25
2.3 The Burrows-Wheeler Transform . 30
2.4 Suffix Trees . 34

3 Phylogenetic Trees 38
3.1 Distance Methods . 38

4 Hidden Markov Models 40
4.1 The Forward-Backward Algorithm . 42
4.2 The Viterbi Algorithm . 42

2

CSCI 1810 Fall 2022

1 Sequence Alignment
(Sept. 12)

In this chapter of the course, we will take a look at those algorithms that revolutionized the
field of computational biology, and laid down robust foundations for its future.

We will first look at the problem of global alignment, after which we will consider the
statistical foundations of this topic, and then finally we’ll study local and gap alignment.
The algorithmic technique of dynamic programming will play a key role throughout. Let’s
get started.

1.1 Global Alignment

Consider two DNA sequences X = ATTACG and Y = ATATCG. What’s the optimal way to
align these two sequences?

We haven’t formally defined what any of this means, but going off our intuition, we would
guess that the fewer mismatches an alignment has, the better it is. It’s easy to see that the
best alignment for these two sequences, then, is:

ATTA-CG

|||||||

A-TATCG

The problem of global alignment of two sequences is that of finding an alignment for
every residue in each sequence.

Some foreshadowing: we will soon be looking at local alignment, in which we look for the
best alignment of any subsequences of the given sequences. The motivation behind this, as
well as how it differs from global alignment, will be made clear then.

1.1.1 Formal setup

However, what if a (T, -) alignment is really bad for us for some reason? Or if we want to
minimize the number of (A, C) alignments? We can do so by penalizing such undesirable
alignments, and this can be done by choosing an appropriate scoring scheme.

Given two strings over a finite alphabet Σ, a scoring scheme is a function δ : Σ×Σ→ R.
In the case of DNA sequences, Σ = {A, T, G, C}, and in the case of protein sequences Σ would
be the set of 20 amino acids.

It’s usually convenient to represent a scoring scheme in the form of a table. For example:

A T C G

A 1 0 0 0
T 0 1 0 0
C 0 0 1 0
G 0 0 0 1

Figure 1. The Unitary or Diagonal Scoring Scheme.

3

CSCI 1810 Fall 2022

We also introduce a related concept: the gap penalty is a function δ : Σ→ R which tells you
the cost for aligning a character with a gap (-). Gaps are also called indels by biologists,
which stands for “insertion/deletion mutations”.

Abuse of Notation: We will use δ to refer to the scoring scheme and the gap penalty.

Finally, suppose we have an alignment x1 . . . xn and y1 . . . yn where xi, yi ∈ Σ∪{-}, then
the score of the alignment is given by Σm

i=1δ(xi, yi).

For example, under the unitary scoring scheme (Figure 1) with 0 gap penalty, the align-
ment of X and Y given in §1.1:

A T T A - C G

| | | | | | |

A - T A T C G

1 + 0 + 1 + 1 + 0 + 1 + 1 = 5

has a score of 5.

If we change the gap penalty to -1, then the score of the same alignment changes to 3.
From this, it’s clear that you can get different scores for the same alignment under different
scoring schemes, and that the optimal alignment of two sequences depends on the scoring
scheme being used.

Finally, we can formally state the problem of global alignment:

The optimal global alignment of two sequences under a chosen scoring scheme and gap
penalty is the alignment of the two sequences with maximum score.

Now, how would one find this optimal global alignment? One way is to enumerate all
possible alignments of the given sequences, and pick the one with the best score. But
we’ll see in the homework that this process is computationally inefficient. The principle of
dynamic programming, however, comes to our rescue, as we will see in §1.1.3.

1.1.2 The edit graph

Let Σ be a finite alphabet, and let X = x1 . . . xm and Y = y1 . . . yn be strings over Σ. To
X and Y , we associate a directed graph termed the edit graph of X and Y .

The vertices of the graph are the vertices of the rectangular grid of size (m+1)× (n+1).
By v(i, j) we will mean the vertex in the grid corresponding to the (i + 1)th row and the
(j + 1)th column.

Between the vertices, we have three kinds of edges:

1. A gap-in-Y edge: for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have an edge v(i− 1, j)→ v(i, j). This
edge corresponds to (xi, -) in the alignment.

2. A gap-in-X edge: for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have an edge v(i, j−1)→ v(i, j). This
edge corresponds to (-, yi) in the alignment.

3. An alignment edge: for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have an edge v(i−1, j−1)→ v(i, j).
This edge corresponds to (xi, yj) in the alignment.

4

CSCI 1810 Fall 2022

What exactly does this graph tell us? This will become clear through the following
example:

Example 1.1.1. Suppose we want to construct an edit graph for two sequences AC and
AGC. We set up a grid of dimensions 3× 4 as shown in the picture below:

A

C

A G C

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,3

1,3

2,3

Figure 2. Edit Graph for AC and AGC.

Let’s try looking at a path in this graph. Say we have the following sequence of vertices:

v(0, 0)→ v(1, 1)→ v(1, 2)→ v(2, 3)

Note that it can be interpreted as the following alignment:

A-C

AGC

Similarly, suppose we’re given an alignment:

AC--

A-GC

We can construct a directed path in the graph:

v(0, 0)→ v(1, 1)→ v(2, 1)→ v(2, 2)→ v(2, 3)

We come to the crucial insight which will allow us to develop an algorithm for global
alignment:

Given two sequences X and Y , there is a 1-to-1 correspondence between directed paths from
v(0, 0) to v(m,n) in their edit graph and their alignments.

We will explore this idea further in the next section.

1.1.3 The Needleman-Wunsch algorithm(Sept. 19)

Recall that any path through the edit graph represents a sequence of matches, mismatches,
and indels that uniquely represents one possible alignment of the two sequences. It’s worth
noting that in grid corresponding to the edit graph, we index from 0.

5

CSCI 1810 Fall 2022

The fundamental concept of Needleman and Wunsch was that to calculate the optimal
alignment score, one would only need to calculate and enumerate all the ways that an aligned
pair can be added to a shorter segment to produce an alignment of an additional position in
the sequences. If one always chooses the highest possible score for the extension, the highest
score accumulated in the end is the global optimal score. And the path taken during the
summation of the optimal score is the optimal alignment.

1.1.4 The main algorithm

Suppose we have two sequences X,Y over Σ of lengths m and n respectively. By Xi we will
represent the ith character of X.

We initialize a table of size S of dimensions (m+ 1)× (n+ 1). By Si,j we will represent
the element in the (i, j)th cell of our table S.

1: function Global Alignment(X ∈ Σm, Y ∈ Σn)
2: S0,0 ← 0
3: for i ∈ {1, 2, . . . ,m} do
4: Si,0 ← Si−1,0 + δ(Xi,-)
5: end for
6: for j ∈ {1, 2, . . . , n} do
7: S0,j ← S0,j−1 + δ(-, Yj)
8: for i ∈ {1, 2, . . . ,m} do

9: Si,j ← max

Si−1,j−1 + δ(Xi, Yj)

Si−1,j + δ(Xi,-)

Si,j−1 + δ(-, Yj)
10: end for
11: end for
12: return Sm,n

13: end function

1.1.5 How to obtain the optimal alignment from this table?

Obviously for many applications, we don’t just want to know what the score of the optimal
alignment of two sequences is, but also what the alignment that achieves this score is.

There are several strategies for obtaining the optimal alignment:

• One solution is to fill out the table in the algorithm above, and then starting at
the bottom right cell of the matrix, and recalculate the max that lead to the cell’s
value. This time, rather than just taking the max, record the cell from which the max
originated (resolving ties arbitrarily: optimal alignments aren’t unique in general).

In other words, we determine whether the term of the recurrence originating from an
X-gap, a Y -gap, or a match/mismatch was optimal, and backtrace to the correspond-
ing position.

• An alternative (and computationally more efficient) solution is to place backpointers
as we’re computing a cell entry, indicating which cell it came from. And then we can
follow these backpointers from Sm,n to S0,0 to obtain the optimal alignment.

6

CSCI 1810 Fall 2022

1.1.6 Complexity of Needleman-Wunsch

We first look at the time complexity of the above algorithm. Indeed, we have:

• Line 2 requires 1 operation.

• Line 4 requires 3 operations, and is repeated m times.

• Line 7 requires 3 operations, and is repeated n times.

• Line 9 requires 9 operations, and is repeated mn times.

• Line 12 is a single operation.

Thus, Needleman-Wunsch runs in O(1 + 3m+ 3n+ 9mn+ 1) = O(mn) time. If m ∼ n,
then the runtime is O(n2), and so this is a quadratic algorithm.

Note that it also requires O(mn) space, which is the size of our table.1

1.1.7 BLOSUM Matrices

As stated in the introduction in §1.2, we want to account for the probability of finding two
different amino acids together during sequence alignment using empirical data. In order to
do so, we use the technique of substitution matrices to assign match and mismatch scores
more meaningfully.

The most popular type of substitution matrices are the BLOSUM (BLOcks SUbstitution
Matrices) matrices introduced by Henikoff and Henikoff (1992), so named because they are
created from data in the BLOCKS database. Instead of a formal construction, we’ll look at
a concrete example.

Let us align strings over the alphabet Σ = {A, B, C }. A block is just a fixed region in a
given set of aligned sequences. For example, suppose that from some species whose proteins
encoded over Σ, we obtain six sequences of the same protein that is 4 residues long from 6
different organisms. This gives us a block as follows:

Organism 1 B A B A
Organism 2 A A A C
Organism 3 A A C C
Organism 4 A A B A
Organism 5 A A C C
Organism 6 A A B C

Figure 3. Sample block.

We want to figure out what evolutionary information the block above encodes, so as to
improve on our scoring scheme for sequence alignment.

Now, in our block above, we have a total of 6× 4 = 24 residues. Of these 24 residues, we
have 14 As, 4 Bs, and 6 Cs.

1However, it is possible to reduce the space usage to O(m + n) using Hirschberg’s divide-and-conquer
algorithm.

7

CSCI 1810 Fall 2022

As we have 6 letters per column, there’s
(
6
2

)
= 15 ways of picking a pair of letters in each

column. As there are 4 columns, we have 15 × 4 = 60 possible ways of picking a pair of
letters at the same position in the strings (i.e. in the same column) from the above table.

The table below lists the frequencies of these possible alignment pairs that we observe in
the table above:

Aligned Pair Observed Frequency
A to A 26/60
A to B 8/60
A to C 10/60
B to B 3/60
B to C 6/60
C to C 7/60

Here’s an example of how the entries in the table above were computed: note that the only
“B to B” alignments in the table above are in the third index in our sequences, and we have
three such instances. One is between Organism 1 and Organism 4, the second is between
Organism 1 and Organism 6, and the third one is between Organism 4 and Organism 6.

Now that we’ve gotten some observed data, let’s see how it lines up with our expected
data. As we have A occurring in our sequences with probability 14/24, B with probability
4/24, and C with probability 6/24 (see 2 paragraphs before table above), we should have
an “A to A” alignment with probability 14/24× 14/24.

Similarly, we must have an “A to B” alignment with probability 2× 14/24× 4/24 and so
on. We can thus obtain expected frequencies.

We’ll use the log-likelihood ratio f of each possible aligned pair in order to compare these
two frequencies. This value is defined as:

f = 2× log2

(
Observed frequency

Expected frequency

)
Let’s put everything together:

Aligned Pair Observed frequency Expected Frequency f

A to A 26/60 196/576 0.70
A to B 8/60 112/576 -1.09
A to C 10/60 168/576 -1.61
B to B 3/60 16/576 1.70
B to C 6/60 48/576 0.53
C to C 7/60 36/576 1.80

Figure 4. BLOSUM matrix scores.

How does this help us in our alignment algorithm in any way? Indeed, we can use a
scoring scheme taking the value of f in the table above, and this is a statistically-justified
scoring scheme.

For example, if the observed frequency of a substitution between A and B is less than
the expected frequency, then δ(A, B) < 0 as seen above. Namely, we penalize for an A-B
alignment, and we can do so because from our observed data, this alignment doesn’t really
happen that frequently.

8

CSCI 1810 Fall 2022

1.2 Local Alignment(Sept. 21)

Recall that in global alignment, we want to find an alignment for every residue in all the
sequences given. What if, however, we’re given two sequences that we know to be very
dissimilar, but which contain some regions of similarity?

Motivating Example 1. Here’s a silly example. Say we have two sequences TTCCCGGGAA
and AAAAAAACCCGGGTTTTTTT, and say we penalize mismatches with −2, gaps with −1, and
alignments with +1. The optimal global alignment, then, is:

AAAAAAA__CCCGGG__TTTTTTT

_______TTCCCGGGAA_______

But what if we just want to find the region of similarity, namely CCCGGG in both sequences?

Motivating Example 2. Here’s some more motivation rooted in biology: suppose we had
2 distantly related genomes, and we wanted to identify genes that were highly conserved
between the two. In this case, we can’t expect the strings to align well globally, but if we
can find two regions that are highly conserved between the strings, then we can expect these
regions to align well.

This is the problem of local alignment, which we will define formally in the next section.

1.2.1 Formal setup

Given a sequence X = x1, . . . , xm, a subsequence of X is any string of the form xixi+1 . . . xj
for some 1 ≤ i, j ≤ m. Note that we do not preclude i = j.

Let’s define the problem of local alignment.

Given X and Y over some finite alphabet Σ, and we want to find two subsequences α
and β of X and Y respectively, such that the global alignment score between any pair of
subsequences of X and Y is maximized by α and β.

A quick sanity check: the problem defined above allows us to identify regions of two
strings that align well, even when the remainder of the strings aligns poorly. This does
indeed match up with what we wanted to do, as described in our motivating examples at
the start of this section.

Naively aligning all possible pairs of subsequences is prohibitively expensive from a com-
putational viewpoint. In the next section, we’ll see how to make slight changes to our
algorithm for global alignment to get an efficient algorithm for local alignment.

1.2.2 The Smith-Waterman Algorithm

Given two sequences X and Y of length m and n respectively, we set up the edit graph and
dynamic programming table S for X and Y just as we did for global alignment. We also
carry over the notation used in that section.

Here’s the algorithm for local alignment:

9

CSCI 1810 Fall 2022

1: function Local Alignment(X ∈ Σm, Y ∈ Σn)
2: S0,0 ← 0
3: for i ∈ {0, 1, 2, . . . ,m} do
4: Si,0 ← 0
5: end for
6: for j ∈ {1, 2, . . . , n} do
7: S0,j ← 0
8: end for
9: for j ∈ {1, 2, . . . , n} do

10: for i ∈ {1, 2, . . . ,m} do

11: Si,j ← max

0

Si−1,j−1 + δ(Xi, Yj)

Si−1,j + δ(Xi,−)
Si,j−1 + δ(−, Yj)

12: end for
13: end for
14: return max{Si,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n}
15: end function

How does backtracking work in this case? It’s the same as in the global case, except we
start backtracking from max{Si,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n}, i.e. the cell in the table with the
maximum value (as opposed to from Sm,n as in the case of global alignment), and we stop
as soon as we encounter a cell with entry 0.

1.2.3 How’s this different from global alignment?

Let S be the table for our alignment algorithm as above. In the case of global alignment,
a table entry Si,j corresponded to the optimal alignment of the ith-prefix of X (denoted by
X[i]) and the jth-prefix of Y (denoted by Y [j]).

What does an arbitrary table element correspond to in the case of local alignment? If
you think about it, Si,j corresponds to the optimal global alignment between all the suffixes
of all the prefixes of X[i] and Y [j].

Finally, in the case of global alignment, adding a constant value to all entries of the
scoring matrix does not alter the optimal alignment (this only changes the scores of the
alignments, but the relative scores remain the same). This, however, isn’t the case with
local alignment. Note that there are no negative numbers in the local alignment table.

1.2.4 Complexity of Smith-Waterman

In the algorithm above, lines 3 and 6 require a single operation each, the first being executed
m + 1 times and the second n times. In line 10, we maximize over 5 cases, requiring an
additional comparison relative to the global alignment for a total of 10 operations, and we
execute this line nm times. In line 13, we maximize over nm items. Let’s say each item
requires a load and a comparison operation, for a total of 2nm operations.

The total number of operations is then m+ n+ 12nm+ 1 operations, which again is in
O(nm).

10

CSCI 1810 Fall 2022

1.3 Alignment with Gaps(Sept. 26)

We’ll next look at a alignment with a special emphasis on gaps.

1.3.1 Some biological motivation

When a protein is synthesized, the DNA is transcribed from DNA to RNA. RNA is a similar
macromolecule to DNA: the sugar deoxyribose is replaced by ribose, and the Thymimne
base (T) is replaced by Uracil (U).

As we will see in the HW, DNA consists of large chunks of non-coding DNA called
introns. These introns, once the DNA is transcribed into RNA, are removed via a process
called splicing. The remaining sequences, called exons, are translated into protein.

Now, biologists can usually obtain this RNA from cells, but unfortunately it’s already
undergone splicing, i.e. the non-coding regions have been removed. Using this RNA, we can
obtain DNA complementary to it, which is called cDNA.

In order to figure out what proteins parts of DNA are coding for, we want to find the
location of this cDNA in the genome. Namely, we wish to align this cDNA within the
genome. But this isn’t as easy as it appears on first sight. . .

1.3.2 Gap Penalties

Recall that we wanted to align the cDNA of a protein transcript to the nuclear DNA from
which it was transcribed. The difficulty arises in that large sections of nuclear DNA are
excised via splicing before we get the mature RNA, so we will need to be tolerant of large
gaps in our alignment. However, we don’t want there to be too many of these gaps, and we
don’t want them to be too small.

In this case, we have a somewhat different notion of gap. A small gap and a big gap are
in some sense equivalent, as we don’t care how long the introns are, rather we want to work
under the assumption that there aren’t “too many” of them.

One way to approach this situation is to pick an appropriate scheme to penalize gaps
during sequence alignment. We do so by means of gap functions.

Formally, a gap function is a map w(l) : Z → R. Here, l is an integer representing the
length of a gap, and w(l) is the amount by which we penalize a gap of length l. A few
different gap functions of varying degrees of usage are presented in the table below:

Gap Function w(l)

Linear τ l
Affine γ + τ l

Logarithmic γ + τ log(l)
Quadratic γ + τ l2

You can think of γ as the “opening penalty”, and τ as the “extension penalty”.

Note that the linear gap function is the usual gap penalty that we used in the earlier
sections. Relative to the linear gap function, affine and logarithmic gap penalties favor long
gaps, whereas the quadratic gap penalty allows for short gaps but penalizes longer gaps.
Make sure your intuition for these functions matches their mathematical form.

11

CSCI 1810 Fall 2022

1.3.3 Global alignment with gap function(Sept. 28)

In this subsection, we’ll look at how adding a gap function to our scoring scheme alters our
global alignment algorithm.

Adding a gap function requires us to use 4 matrices to keep track of the optimal alignment—
think about why this is the case. We set them up as follows:

Vi,j = max(Ei,j , Fi,j , Gi,j)

Gi,j = Vi−1,j−1 + δ(xi, yj)

Ei,j = max
k∈{0,1,...,i−1}

Vi,k − w(j − k)

Fi,j = max
l∈{0,1,...,j−1}

Vl,j − w(i− l)

Here Vi,j gives the gapped alignment cost of prefixes of lengths i, j. V is defined in terms
of G, E, and F . Gi,j gives the optimal gapped alignment score of prefixes of x, y of lengths
i, j, conditional on the fact that the ith and jth characters are aligned. E and F on the
other hand give optimal alignments of prefixes conditional on the last character containing
a gap: Ei,j is conditional on the fact that the terminal position in the alignment contains a
gap in sequence x, and Fi,j requires that the alignment ends on a gap in sequence y.

With these definitions, clearly Vi,j is correct: note that Ei,j , Fi,j , and Gi,j give the
optimal gapped alignment cost under three mutually exclusive conditions, and Vi,j gives the
optimal amongst these. Gi,j requires that the final character pair are aligned, so its score
is identical to the aligned (no gap) case in linear gapped alignment. Ei,j represents the
case where x has a gap. We consider all possible alignments that end in an x gap: such an
alignment can start with an arbitrary amount of the y string consumed. The maximum over
k represents the maximum score over alignments of the prefix of length k of y and length
i of x, and then the remainder of x is filled with gaps in the alignment. Similarly, we may
flip x and y to make the same argument for Fi,j .

1.3.4 Complexity

Using this recurrence, we can handle any gap penalty function. However, we pay an asymp-
totically significant cost in terms of time, and a constant factor cost in terms of mem-
ory, to use this technique. Because the maxima in E and F are over a non-constant
number of cells, the time complexity increases. Each such maximum needs to exam-
ine no more than max(m,n) cells of V , and there are 2mn cells in E and F . G on
the other hand only needs to examine a constant number of cells, so evaluating it is
efficient, requiring O(mn) time, and by the same reasoning, evaluating V also requires
O(mn) time. The total time to evaluate every cell in each of these four matrices is thus
O(mn) +O(mn) +O(mn(m+ n)) +O(mn(m+ n)) = O(mn(m+ n)), asymptotically2.

2Note that O(max(m,n)) = O(m + n): to see this, consider the following: limm,n → ∞max(m,n)
m+n

≤
max(m,n)
2max(m,n)

= 1
2
.

12

CSCI 1810 Fall 2022

Note also that the memory requirement increases. Rather than requiring (m+ 1)(n+ 1)
matrix cells, we now require 4(m+ 1)(n+ 1) matrix cells. However, this change is only by
a constant factor, so there is no asymptotic difference.

1.3.5 Global Alignment with Affine Gap Alignment

In the previous section, we saw that general gapped alignment is asymptotically inferior to
linear gapped alignment. Here we derive the recurrence relationship for the special case of
affine gap penalties and show that it is asymptotically equivalent to linear gapped alignment,
again with a constant factor memory increase.

Let the following be so:

• α = match score.

• β = match penalty.

• γ = gap opening penalty.

• τ = gap extension penalty.

Under these hypothesis, note that the affine gap penalty is given by w(l) = γ + τ l. Now,
we take the following recurrence relationships.

Vi,j = max(Ei,j , Fi,j , Gi,j)

Gi,j =

{
Vi−1,j−1 + α xi = yj

Vi−1,j−1 − β xi ̸= yj

Ei,j = max(Ei,j−1 − τ, Vi,j−1 − γ − τ)

Fi,j = max(Fi−1,j − τ, Vi−1,j − γ − τ)

Here V , G, E, and F all have the same interpretations as above.

Note: Here, we wrote V,G,E, and F in terms of match/mismatch/gap penalties, instead
of using a scoring function δ and gap penalty function w(l). You should convince yourself
that these formulae may be equivalently expressed in terms of δ and w(·), rather than α, β,
γ, and τ .

Therefore, in order to prove this algorithm correct, all we need do is show that Vi,j here
is equivalent to Vi,j in the general gapped alignment recurrence. Note that V and G are
defined equivalently, but both are dependent on E and F , thus we need only show that V
and F are equivalent, and it follows that G, and thus V as well, are also equivalent.

The only thing we changed was that we fixed w(l) = −γ − τ . This algorithm does not
work for general gapped alignment, so we will need to rely on this change in order to prove
that it works for affine gapped alignment.

13

CSCI 1810 Fall 2022

Intuitively, E and F make sense, as gaps cost γ to open, and given that we are opening
a gap, the previous pair did not have an equivalent gap, thus we take the score in Vi,j−1,
subtract cost γ to open a gap, and subtract τ to extend this gap to length 1. If, on the other
hand, there is a highly scoring alignment that did have an equivalent gap in the previous
alignment, then we may take Ei,j−1 − τ over Vi,j−1 − γ − τ . Here the cost is only τ , as the
gap has already been opened. Note that this may occur even if Ei,j−1 < Vi,j−1: the gap
open penalty γ is used to control this behavior.

The above intuition could be turned into a formal proof, but we would require some
technical details and essentially have to redo all the work from the general gapped alignment
proof. I don’t give a formal proof here, but I give an alternative simple argument that could
easily be turned into one. Instead of directly showing correctness, we need only show that
Ei,j and Fi,j are equivalent between the two cases. An informal proof follows:

Sketch of proof. Let E′ denote the E from the general recurrence, and E denote the E
from the affine gap penalty recurrence. Also, we proceed without loss of generality, noting
that the following applies to F as well by symmetry.3.

The crux of the argument is the following simple observation: Ei,j−1 − τ ≥ Ei,j−2 −
2τ for any i, j. This follows by way of contradiction; if this were not true, Ei,j−1 =
max(Vi−1,j−2, Ei,j−2 − τ) would be violated, as this would imply that Ei,j−1 < Ei,j−2 − τ .
This fact implies a much stronger looking property of E: namely that Ei,j−1 ≥ Ei,k−(τ((j−
1)− k)) for any k ≤ j − 1. To see this, simply note that this is repeated application of the
original observation: each time k increases, Ei, k decreases by no more than τ .

Now, consider E′
i,j = maxk∈{0,1,...,i−1}(V i, k−w(j− k)). Using the scoring methodology

of E, this is equivalent to max(Vi,j−1−γ−τ, Ei,j−1−τ, Ei,j−2−2τ, Ei,j−3−2τ, . . . , Ei,0−jτ).
Using the stronger property above, we see that any term after the second term is no greater
than the second term, so we may remove them from the consideration in the maximum. This
only leaves the first two terms, namely, we have that E′

i,j = max(Vi,j−1−γ−τ, Ei,j−1−τ) =
Ei,j .

You should try to formally understand the above argument on its own, but it may help
to understand it from a less formal intuition based perspective as well. The key observation
translates to the following: “The optimally scoring alignment that ends in a double gap on
string y over prefixes of x and y of lengths i and j − 1 and j − 2 scores at least as well as
the optimally scoring alignment that ends in a triple gap on string y over prefixes of i and
j − 2.” The stronger form of this is basically that “extending a gap of any length has score
no more than extending the optimal sequence ending in a gap by 1.” We then translate
E′ to use the same scoring mechanism as E, and then using this property, show that the
maximum is equivalent to a maximum over two values: Vi,j−1 − γ − τ and Ei,j−1 − τ , or in
other words, the cost of creating a new gap and extending an existing gap.

3In mathematics, we need to be very careful with symmetry, as it is far too easy to claim symmetry
incorrectly to simplify a proof. As this is an informal proof, I do exactly this; such an argument doesn’t hold
up under scrutiny unless we are very careful. In this alignment problem, we have a very strong notion of
symmetry when δ is a symmetrical matrix (i.e. δa,b = δb,a), in that Global Alignment Score(x, y, δ) =
Global Alignment Score(y, x, δ). Even without this property, we have a weaker notion of symmetry that
is sufficient for this argument, as we never directly refer to δ. The basic notion is that E and F correspond
to one another, with one operating over V and the other over V T where we flip the strings x and y. This
is an obscenely long footnote!

14

CSCI 1810 Fall 2022

Now that we see the algorithm works, the natural next question to ask is how much time
it takes? Have we beaten the O(mn(m + n)) cost of general gap alignment? Hopefully by
now you are getting the hang of asymptotic analysis (if not, a great exercise would be to
repeat the analysis for the general gapped alignment for this case), so I will skip a few steps.
Each of the 4 matrices has (m + 1)(n + 1) cells, and each cell requires constant time to
calculate. Therefore, we may conclude that the algorithm requires only O(mn) time.

1.3.6 Addendum

We mentioned several families of gap penalty in the earlier lecture. We saw that the gen-
eral gapped alignment algorithm is asymptotically slower than linear gapped alignment
(Needleman-Wunsch), but we also saw that the special case of affine gapped alignment is
asymptotically equivalent. We may wonder what other types of gapped alignments may be
efficiently computed. Miller and Meyers showed that for arbitrary concave4 weighting func-
tions (including logarithmic), for two sequences each no longer than n the optimal gapped
alignment may be computed in O(n2 log(n)) time.

We can also (relatively) efficiently compute quadratic gap penalty alignments by a simple
argument. Suppose α = β = γ = τ = 1. Then, the trivial ungapped alignment has score
−n. Similarly, if every character aligns, the trivial ungapped alignment has score n, and
furthermore, no alignment of any pair of substrings of x and y can have score in excess of
n. Now, we can argue that the optimal quadratic gapped alignment does not contain any
gaps of length

√
3n or greater.

By way of contradiction, without loss of generality, assume x can be split into xa, xb, xc
such that the concatenation xa ◦ xb ◦ xc = x, and that xb has length lxb at least of

√
3n.

Assume that the optimal alignment of x and y has a gap in x throughout xb. Therefore, the
optimal alignment score is given by AS(xa, ya) − w(lxb) + AS(xc, yb), for some ya, yb such
that y = ya ◦ yb.

Now, by the above bound AS(xa, ya) and AS(xc, yb) each have score no more than n,
and w(lxb) has cost γ+ τ l

2
xb = 1+ l2xb < 1+3n, therefore AS(xa, ya)−w(lxb)+AS(xc, yb) <

2n− 3n = −n. As above, AS(x, y) ≥ −n, thus we may conclude that no alignment with a
gap greater than

√
3n is optimal.

Asymptotically, for nonzero α, β, γ, τ , similar results hold, and these constants become
unimportant. In general, we can conclude that no gaps of O(

√
n) exist in the optimal

alignment, so when evaluating the maxima in E and F , we only need to consider gaps of
length O(

√
n), yielding the complexity O(mn

√
n).

1.4 Statistics and Alignment

In previous lectures, we have mentioned how the values in the similarity matrix can affect
the behavior of local alignment, causing it to behave like global alignment on average when
its expected value is negative. In this section, we will discuss some other results that arise
from specific parameter choices when using local alignment.

First, we will examine some cases where certain parameter sets can transform local align-
ment into other well-known problems.

4A concave function is any f such that ∀x ≤ y ≤ z,
f(x)+f(z)

2
≤ f(y). In other words, for any y in the

domain of f , the value f(y) lies on or above the line connecting some distinct (x, f(x)) and (z, f(z)).

15

CSCI 1810 Fall 2022

Let’s compare two random sequences of length n.

1.
match = 1

mismatch penalty = −∞
gap penalty = 0

Notice that these parameters will cause local alignment avoid pairing mismatched
characters. As a result, it finds an ordered sequence of exact matches between strings,
and it will add gaps freely as needed. This is the longest common subsequence
between the strings.

On average, these alignments will have score linear in the length of the sequences.
That is, the score will be on the order of n.

2.
match = 1

gap penalty = −∞
mismatch = −∞

Notice that in this case, local alignment will avoid creating gaps and pairing mis-
matched characters. So it will locate only contiguous, or connected, regions of matches.
This is the longest common substring between the sequences.

On average, the score of the alignment is proportional to the logarithm of the length
of the sequence. That is, the score will be on the order of log(n)

This is because the probability of random sequences matching exactly decays expo-
nentially as the sequences grow longer. For example, the probability of aligning two
random DNA bases is 1

4 = (P (AA) + P (CC) + P (GG) + P (TT)). The probability of
matching two random length-2 DNA strings will be 1

16 = (14 ·
1
4). The probability for

length-3 strings is 1
64 = (14 ·

1
4 ·

1
4), and so forth. Since the alignment score is equal

to the length of continuous matches, as the lengths of the sequences increase, there
are more substrings of all lengths from 1 to n+ 1, each of which has an exact match
probability which increases logarithmically, so the score will grow logarithmically as
well.

We also know the following general results about the relation between local alignment
behavior and global alignment behavior:

1. For a particular set of parameters, if the expected score of global alignment on two
random sequences is positive, then the local alignment score with the same parameters
grows linearly with the lengths of the sequences.

2. For a particular set of parameters, if the expected score of global alignment on two
random sequences is negative, then the local alignment score with the same parameters
grows logarithmically with the lengths of the sequences.

3. For a particular set of parameters, if the expected score of global alignment on two
random sequences is 0, then local alignment is at its phase transition. This means
that the behavior of local alignment score as it relates to sequence length falls at the
boundary between the logarithmic growth and linear growth regimes. This behavior

16

CSCI 1810 Fall 2022

can be unpredictable, and even slight parameter changes may cause local alignment
adopt linear or logarithmic behaviors.

The expected score of sequence alignment is very difficult to compute exactly, but we can
estimate its value by calculating a large sample of alignments and averaging their scores.

The proofs of each of these results is beyond the scope of this course, but hopefully your
intuition about alignment algorithms agrees with these conclusions!

1.5 Connections with Graph Theory(Oct. 5+10)

As we have discussed in previous lectures, identifying the maximum similarity score is equiv-
alent to finding the highest-weight or longest path in the edit graph. In general, finding the
longest simple path through a graph is NP-hard, but in a directed acyclic graph, the problem
is equivalently difficult to finding the shortest path.

What is the P versus NP problem?

Some questions are easy (from a computational point of view) to solve quickly (i.e. in poly-
nomial time), whereas some questions have solutions that are easy to verify. For example,
solving a sudoku question is significantly harder than verifying whether an instance of a
filled-in sudoku puzzle is correct right or wrong.

The P versus NP question asks whether every problem whose solution can be quickly ver-
ified (technically, verified in polynomial time) can also be solved quickly (technically, in
polynomial time). You can read more about this here.

To see this, note that a DAG contains no cycles: once a path reaches a node, there is no
way to return to this node. For this reason, we have no issues with infinite weight paths
and negative cycles. Then, we can simply negate the weight of each edge, and the shortest
path through the negated graph is the longest path in the unnegated graph. Figure 3 below
illustrates this concept:

2

1

2

-1

2

0

3

1

7

-5

4

12

-2

-1

-2

1

-2

-0

-3

-1

-7

5

-4

-12

Figure 4. Graphs G (left) and G′ (right) obtained by negating weights. The shortest
path in G corresponds to the heaviest path in G′.

Dijkstra’s Algorithm (here’s the Wikipedia page) is guaranteed to find the shortest path
through any graph that does not contain any negative-weight edges. This is not directly
applicable when we have negative similarity scores, but we can still use this algorithm to
solve global alignment problems with the following trick:

17

https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

CSCI 1810 Fall 2022

Suppose we wish to identify the optimal global alignment for any strings x, y with scoring
scheme δ. We may choose some δ′ with a constant c such that:

δ′(a, b)
.
=

{
a ̸= - ∧ b ̸= - : δ(a, b) + 2c
a = - ∨ b = - : δ(a, b) + c

δ′(a, b) =

{
a, b ∈ Σ : δ(a, b) + 2c

a or b is a gap : δ(a, b) + c

δ′(a, b) =

{
δ(a, b) + 2c a, b ∈ Σ

δ(a, b) + c either a or b is a - (gap)

We may select c such that each value in the range of δ is negative, and then the negated
edit graph contains only positive edges, allowing us to use Dijkstra’s Algorithm to solve for
the longest path.

To see that the alignments will be the same, consider that, for strings of lengths m and n,
supposing without loss of generality that m ≤ n, there are exactly a aligned characters and
b gaps, such that a ∈ {0, 1, 2, . . . ,m}, and b = n−m+ 2(m− a). Any alignment produced
using δ′ will have the score of the alignment produced using δ, plus an additional 2ca for
aligned characters and cb for gap characters.

Substituting these values in, we see that 2ca+ c(n−m+ 2(m− a)) = 2ca+ cn− cm+
2cn− 2ca = c(n+m). This value does not depend on a and b (only on the lengths of x and
y, thus we may conclude that the score of any alignment produced using δ differs from that
produced by δ′ differs only by a constant amount.

In a nutshell, Djikstra’s algorithm allows us to find the optimal global alignment.

But what about local alignment? Note that we cannot use the trick above to ensure
a graph with nonnegative edge weights from the edit graph. We can, however, use the
Bellman-Ford algorithm, which runs in O(nm(n + m)) time on a graph of diameter in
O(n +m). Note that this time complexity is inferior both to that of Dijkstra’s algorithm
(which runs in O(nm log(nm)) time), and our previous dynamic programming solution for
local alignment.

Fortunately, we can leverage the fact that we have a DAG to obtain a more efficient
algorithm. In a DAG, we can use topological sorting, where we sort the vertices of the
graph according to the partial ordering a < b ⇔ b is reachable from a. The existence of
this partial ordering is a property of the DAG: if the edit graph contained cycles, such an
ordering would not exist.

In the context of alignment, this is very easily interpretable: any node Si,j < Sk,l implies
that (i, j) ̸= (k, l), k ≥ i, and l ≥ j.

To topologically sort a graph, we require O(V + E) time, and to identify the shortest
path in a topologically sorted graph, we also require O(V +E) time. In a two-dimensional

18

CSCI 1810 Fall 2022

edit graph, there are O(nm) vertices, and each vertex is associated with no more than 3
edges, thus there are O(nm) edges as well. We may therefore conclude that identifying the
shortest path in a DAG via topological sorting is possible in O(nm) time: exactly the same
time complexity as by our dynamic programming algorithm!

So, we saw that Djikstra’s doesn’t work for local alignment, but Bellman-Ford does. This
is slower than our earlier solution, so we can instead use topological sorting, giving us an
algorithm that runs (asymptotically) just as fast as our earlier solution.

You must be wondering, why exactly did we do all this?

We had algorithms for computing the global, local, general gapped, and affine gapped
alignments of any pair of sequences, and we also had some idea (from Homework 1) of how
to generalize these algorithms to operate over more than two input sequences. However, by
examining the problem from a graph theoretic perspective, we can also convert the problem
into a DAG, and then apply an existing algorithm (shortest path via Topological Sort) to
solve the problem.

Furthermore, since the edit graphs for global, local, and affine gapped alignment all
contain O(nm) edges and vertices, we can obtain the same time complexity using this
technique as with our dynamic programming solutions.

If we approach the problem in this manner, our solutions are theoretically simpler and our
implementations (generally) require less code. On the theoretical side, we only need to prove
that our algorithm produces the correct edit graph and that the longest path through the
edit graph is equivalent to the maximum similarity alignment. As for implementation, we
need only write a program that translates the recurrence relationships into edit graphs: the
work of initializing and filling the dynamic programming matrix is subsumed by the longest
path algorithm. Backtracing too becomes simpler: we need only translate the longest path
into an alignment.

With this, we finish our chapter on sequence alignment, and move onto combinatorial
pattern matching.

2 Combinatorial Pattern Matching

Over the years the expression combinatorial pattern matching has become a synonym for the
field of theoretical computer science concerned with the study of combinatorial algorithms
on strings and related structures.

The term combinatorial emphasizes that these are algorithms based on mathematical
properties and a deep understanding of the individual problems, in contrast to statistical
or machine learning approaches, where general frameworks are often applied to model and
solve the problems.

Work in this field began in the 1960s with the study of how to efficiently find all occur-
rences of a pattern string p in a text t. We, too, take this as our starting point. . .

19

CSCI 1810 Fall 2022

But before looking at the highlight of this section, the Knuth–Morris–Pratt algorithm for
string matching, we’ll get a taste of the core computational model used by the algorithm,
namely deterministic finite automata (DFAs for short).

2.1 Finite Automata and Regular Expressions

Finite automata are the most basic models of computation. What can such a basic model
of computation do? Many useful things! In fact, we interact with such computers all the
time, as they lie at the heart of various electromechanical devices.

Before studying finite automata, let’s set up some terminology:

Definition. An alphabet is a finite set of symbols or letters. A word or string over an
alphabet Σ is a finite sequence of symbols from Σ.

Definition. The empty string (the string with no symbols) is denoted by ϵ.

The empty string ϵ is to strings what 0 is to the integers. This’ll become clear in a second:

Definition. Given two strings x = x1 . . . xn and y = y1 . . . ym, the concatenation of x
and y is denoted by xy and is the string x1 . . . xny1 . . . ym.

Thus, for any string x, we have xϵ = ϵx = x. Some more definitions follow.

Definition. Given a string x = x1 . . . xn over Σ (i.e. xi ∈ Σ)we define:

1. The length of x is written |x| and is the number of characters in x (here, |x| = n).

2. A prefix of x is a string x1 . . . xi for some 1 ≤ i ≤ n.

3. A suffix of x is a string xj . . . xn for some 1 ≤ j ≤ n.

And finally, we have:

Definition. A language is a set of strings over some alphabet Σ.

2.1.1 Operations on languages

Since a language is, in some sense, nothing but a set, we can define operations on languages
just as we do with sets.

1. The union, intersection, and complement of a language are defined just as they are for
sets.

2. Given two languages L1 and L2 over Σ, we define the language L1◦L2 = {w1w2 | w1 ∈
L1, w2 ∈ L2}, that is, L1 ◦ L2 is the language obtained by concatenating all words in
L1 with all words in L2.

3. Let L0 = {ϵ}. Define Li = L ◦ Li−1 for i ≥ 1. The Kleene closure of a language L
over alphabet Σ is defined the language L∗ = L0 ∪ L1 ∪ L2 . . . =

⋃∞
i=0 L

i.

4. Note that ϵ ∈ L∗, but sometimes we will not want to include the empty string in
the Kleene closure, leading us to define the positive closure of a language. Given a
language L, it’s positive closure, denoted L+, is given by L+ = L1 ∪L2 . . . =

⋃∞
i=1 L

i.

20

CSCI 1810 Fall 2022

In words, the Kleene closure of a set of strings is a new set containing all possible com-
binations of concatenations of strings from the original language. The Kleene closure of a
language is also called the Kleene star of a language, and sometimes we’ll be lazy and refer
to it directly as just the star of a language.

Here’s some examples:

1. 0∗ = {ϵ, 0, 00, 000, . . .}.

2. 0∗ ∪ 1∗ = {ϵ, 0, 1, 00, 11, 000, 111, . . .}.

3. {0 ∪ 1}∗ = all strings over the alphabet {0, 1}.

2.1.2 Regular Expressions

In arithmetic, we can use the operations + and × to build up expressions such as (5+3)×4.
Similarly, we can use regular operations to build up expressions describing languages, which
are called regular expressions. An example is (0 ∪ 1)0∗.

This’ll become very clear in a second.

Definition. The regular expressions over Σ and the languages they denote are defined
recursively as follows:

1. ∅ is a regular expression denoting the empty language ∅.

2. ϵ is a regular expressions and denotes the language {ϵ}.

3. For each symbol a ∈ Σ, a is a regular expression and denotes the language {a}.

4. If p and q are regular expressions denoting the languages P and Q respectively, then
the following are regular expressions:

(a) (p+ q) corresponding to the language P ∪Q

(b) pq corresponding to the language P ◦Q

(c) p∗ corresponding to the language P ∗

(d) p+ corresponding to the language P+

Here are some examples of regular expressions and the languages that they correspond
to:

Examples. Let Σ = {0, 1}.

1. 0∗ = {ϵ, 0, 00, 000, . . .}

2. 0∗1 = {1, 01, 001, 0001, . . .}

3. (0 + 1) = {0, 1}

4. (0 + 1)∗ = Σ∗ = all strings over Σ

5. 1(0 + 1)∗1 + 1 = all strings starting and ending with 1

Those languages that correspond to some regular expression have several nice properties
(which we’ll see when we learn about finite automata), and thus have a special name:

21

CSCI 1810 Fall 2022

Definition. A language is said to be a regular language if and only if it is denoted by a
regular expression over a finite alphabet.

2.1.3 Deterministic Finite Automata

There exist two types of finite state automata: deterministic and non-deterministic. We’ll
see that these two are actually equivalent from a computational point of view, and each of
them is in turn equivalent to a regular expression.

Informally, a deterministic finite automaton (DFA) is a machine with a control unit, an
input tape, and a head that processes the input tape from left to right, such that:

• The control unit consists of a number of states, and the DFA is in one of these states
at any given instance.

• Each time the head reads an input, the DFA can transition from one state to another.

Finite automata and their probabilistic counterpart Markov chains are useful tools when
we are attempting to recognize patterns in data. These devices are used in speech processing
and in optical character recognition. Markov chains have even been used to model and
predict price changes in financial markets.

Here’s a more formal definition:

Definition. A deterministic finite automaton (DFA) is a machine M = (S,Σ, δ, s0, F)
comprising of a control unit, a tape for input, and a head that reads the tape left to right,
where:

1. S is a finite set of states.

2. Σ is a finite alphabet for the symbols on the tape.

3. δ : S × (Σ ∪ ϵ)→ S is the state transition function

4. s0 is the initial state of the DFA.

5. F ⊆ S is the set of final or accepting states.

In order to describe the state of a DFA at some point during computation, we define the
following:

Definition. An instantaneous description (ID) of a DFA is a pair (s, w) where s ∈ S
represents the current state, and w ∈ Σ∗ represents the unused portion of the input tape,
i.e. the symbol under the tape head followed by the rest of the string to the right.

Note that the initial ID is the ID given by (s0, w) and an accepting ID is an ID of the
form (s, w) for s ∈ F .

Having defined the notion of an ID, we’ll set up notation to talk about how these IDs
change throughout the computation by means of a binary relation.

Definition. If δ(s, a) = s′, then we write (s, aw) ⊢ (s′, w) for all w ∈ Σ∗, where a ∈ Σ∪ϵ.

Note that if, in the above definition, a = ϵ, then we transition from state s to s′ without
reading any input.

22

CSCI 1810 Fall 2022

Definition. We use ⊢∗ to denote the reflexive, transitive closure of ⊢.

And finally:

Definition. The language L(M) of a DFA M is the set of strings accepted by M , that
is:

L(M) = {w ∈ Σ∗ | (s0, w) ⊢∗ (s, ϵ) for some s ∈ F}

This was not done in class, but here’s an example of a simple DFA. Suppose we have the
alphabet Σ = {0, 1}. Consider:

q0 q1

1

0

0 1

In the picture above, q0 is the initial state of the DFA, and q1 is an accepting state (commonly
denoted using the double circles in the above diagram).

The transition function is represented as arrows, e.g. δ(q0, 1) = q1, and δ(q0, 0) = q0 are
represented by an arrow from q0 → q1 for “input” 1, and similarly for the self-loop from
q0 → q0.

What’s the language of this DFA? Indeed, the DFA accepts all strings that end in 1.
Here’s an example of a computation by this DFA on input 10110:

(q0, 10110) ⊢ (q1, 0110) ⊢ (q0, 110) ⊢ (q1, 10) ⊢ (q1, 0) ⊢ (q0, ϵ)

and as q0 /∈ F , we say that the DFA rejects the string 10110.

On the other hand, 101101 is accepted by the DFA:

(q0, 101101) ⊢ (q1, 01101) ⊢ (q0, 1101) ⊢ (q1, 101) ⊢ (q1, 01) ⊢ (q0, 1) ⊢ (q1, ϵ)

2.1.4 Nondeterministic Finite Automata

Put (very) informally, a nondeterministic finite automaton (NFA) is nothing but a DFA
where we’re allowed to be in multiple states at the same time. Spooky, isn’t it? :)

Formally, we have:

Definition. A nondeterministic finite automaton (NFA) is a machineM = (S,Σ, δ, s0, F)
comprising of a control unit, a tape for input, and a head that reads the tape from left to
right, where:

1. S is a finite set of states.

2. Σ is a finite alphabet for the symbols on the tape.

3. δ : S × (Σ ∪ ϵ)→P(S) is the state transition function

4. s0 is the initial state of the NFA.

23

CSCI 1810 Fall 2022

5. F ⊆ S is the set of final or accepting states.

The language of a NFA is defined analogously to what we did for DFAs, and the definitions
for IDs carry over as well.

Well, so what’s different? Note that the definition above looks very similar to the one for
DFAs, with one small (but significant!) change: the transition function has range P(S),
which is the power set or the set of all subsets of S.

This makes rigorous our earlier idea of “being in multiple states at the same time”.

Here’s an example of a NFA:

q0 q1

q2q3

a

b

a

a, b

ϵ

ϵ

What’s the language of this NFA? Indeed, it accepts all strings that end in aba. Let’s see
a concrete example.

Suppose we have a string ababa provided as input to the NFA above. Our NFA starts
out in the initial state q0 as seen from the picture above. We denote one possible series of
transitions of IDs:

(q0, ababa) ⊢ (q1, baba) ⊢ (q2, aba) ⊢ (q3, ba) ⊢ (q1, ba) ⊢ (q2, a) ⊢ (q3, ϵ)

and so ababa is in the language of the machine above.

Alternatively, another computation history is given by:

(q0, ababa) ⊢ (q0, baba) ⊢ (q0, aba) ⊢ (q0, ba) ⊢ (q0, ba) ⊢ (q0, a) ⊢ (q0, ϵ)

Thus, unlike a DFA, a NFA can have multiple computation histories for the same input
string. As long as there exists one computation history in which the given string is accepted,
we say that the NFA accepts that string!

2.1.5 Tying it all together

You might expect that being able to be in multiple states at the same time means that
NFAs are more powerful than DFAs, i.e. can recognize some languages that DFAs cannot
recognize. This, however, is not true.

24

CSCI 1810 Fall 2022

It turns out that every NFA can be converted to a DFA; the issue, however, is that this
transformation results in an exponential number of states in the DFA as compared to in the
NFA. It also turns out that every language recognized by a DFA is a regular language.

Let’s state this formally:

Theorem. Every NFA can be converted to a DFA recognizing the same language.

Theorem. Every language recognized by a DFA is a regular language.

We thus have the following correspondence:

NFAs ⇐⇒ Regular Expressions ⇐⇒ DFAs

Formal proofs were not given in class, but you can find them in Sipser’s Introduction to the
Theory of Computation (or in CS 1010 ,).

2.2 The Knuth-Morris-Pratt Algorithm

Let’s get back to our original problem, namely string matching. Formally, our problem is
as follows:

String Matching

Input: A pattern p and a text t, over some alphabet Σ.
Output: The first exact occurrence of p in t.

2.2.1 First steps

Let’s get started with constructing Mp.

1. First construct a skeletal DFA:

q0 q1 qlql−1p1
̸= p1 plp2 pl−2

. . .

2. Observe that the state qi of Mp corresponds to the prefix p1 . . . pi of p.

3. Our machine Mp will start in state q0 reading t1, the first symbol in the text.

However, what do we do in case we’re at state qj with the next input symbol ti, and
pj+1 ̸= ti? Should we just start over from q0? But then, this isn’t any different from
Camillo’s algorithm!

Instead, we can harness the fact that DFAs have, in some sense, a memory, and use this
fact to transition to an appropriate state in our machine Mp. This is all very vague, but
will become clear soon once we learn about the failure function.

2.2.2 The Failure Function

Before proceeding, we recall some facts about our skeletal machine Mp. The state qj of the
skeletal machine Mp corresponds to the prefix p1 . . . pj of p. Also, Mp starts in state q0, and

25

CSCI 1810 Fall 2022

so we need to position it vis-á-vis the text. Thus, the head of Mp starts off at t1 on the
input tape.

Suppose after having read t1t2 . . . tk (the first k characters of the text t), we find that Mp

is in state qj . This implies that:

1. The last j symbols of t1 . . . tk are p1p2 . . . pj .

2. The last m symbols of t1 . . . tk are not a prefix of p1 . . . pl for m > j, i.e. the suffix of
size of j of t1 . . . tk is the prefix of size j of p.

Now, if tk+1 = pj+1, then we move to state qj+1 and our tape head moves right by one.
But what if tk+1 ̸= pj+1? In this case, where should we transition to?

If you think about it, you’ll realize that we want Mp to enter the state qi for highest i
such that p1 . . . pi is a suffix of t1 . . . tk+1. In order to determine this i, we construct that
we’ll call the failure function for the pattern p. Formally, we have:

Definition. The function f such that f(j) is the largest integer s < j for which p1 . . . ps
is a suffix of p1 . . . pj is said to be the failure function for the pattern p.

What exactly does this function compute? In words, f(j) is the number of positions we
can “fall back” to keep looking for the pattern p. Also, note that s < j =⇒ p1 . . . ps is a
proper prefix of p1 . . . pj .

Here’s an example of the failure function f for the pattern p = aabbaab over Σ = {a, b}.

i 1 2 3 4 5 6 7
f(i) 0 1 0 0 1 2 3

More concretely, suppose i = 2. Then the prefix we’re dealing with is aa, and the only
proper prefix of this prefix is a, which happens to be a suffix as well. So f(2) = 1.

Similarly aab is the longest proper prefix of aabbaab that is also a suffix of aabbaab, and
hence f(7) = 3.

2.2.3 How do we use the failure function?

We’ll now look at an algorithm that utilizes failure function for a pattern p, in order to find
an occurrence of p in text t.

First, define fn recursively as follows: let f1(j) = f(j). We say fn(j) = f(fn−1(j)).

Thus, from our example in §2.2.2, we have f2(6) = 1. Intuitively, fn(j) is just f applied
n times to j.

Suppose that Mp is in state j having read t1 . . . tk, and tk+1 ̸= pj+1. At this point, Mp

applied the failure function repeatedly to j, and two cases arise:

1. fm(j) = u and tk+1 is precisely pu+1, or

2. fm(j) = 0 and tk+1 is different from pi for all i ∈ {1, . . . , j}.

26

CSCI 1810 Fall 2022

In the first case above, we want Mp to enter state qu+1. In the second one, Mp enters the
state q0. But in both cases, the tape head proceeds to the cell on the input tape with tk+2.

In Case 1, it’s easy to see that if p1 . . . pj was the longest prefix of p that is a suffix of
t1 . . . tk, then p1 . . . pfm(j)+1 is the longest prefix of p that is a suffix of t1 . . . tk+1. In Case
2, no prefix of p is a suffix of t1 . . . tk+1.

The algorithm is now clear: Mp proceeds reading tk+2 and so on and so forth, operating
in the fashion described above, until it reaches the final state ql, in which case it accepts. If
it never reaches the final state, then the given text t has no occurrence of p.

Let’s go back to our earlier example from §2.2.2 where p = aabbaab. We have a skeletal
DFA for p as follows:

q0 q1 q2 q3 q4 q5 q6 q7a a

b

b b a a b

Having computed the failure function, we can add in the following arrows:

q0 q1 q2 q3 q4 q5 q6 q7a a

b

b
b a a b

Let t = abaabaabbaab.

Initially Mp is in state q0. On reading the first symbol of t (i.e. t1 which is an a), Mp

enters q1. Since there is no transition from q1 on the second input symbol of t (i.e. t2 which
is b), Mp enters state q0. More explicitly, Mp goes back to the state given by the output of
the failure function from q1.

Now, u = 0 and pu+1 = p1 = a ̸= t2, and so Case 2 (from the discussion in § 2.2.3)
prevails and Mp remains in state 0. From here Mp continues consuming characters in the
input string and following the corresponding arrows. If the machine ever reaches q7, the
pattern p has been found in the text t.

2.2.4 Computing the failure function

Having seen the failure function in action, let’s now see how to compute it. That is, given
a string p = p1 . . . pl, how do we compute its failure function?

1: function Failure Function(p = p1 . . . pl)
2: f(1)← 0

27

CSCI 1810 Fall 2022

3: i← 0
4: for j ∈ {2, . . . , l} do
5: i← f(j − 1)
6: while pj ̸= pi+1 and i > 0 do
7: i← f(i)
8: end while
9: if pj ̸= pi+1 and i = 0 then

10: f(j)← 0
11: else
12: f(j)← i+ 1
13: end if
14: end for
15: end function

2.2.5 Proof of correctness for the failure function

How can we be sure our algorithm for constructing the failure function is correct? By proof,
of course! We’ll refer to the pseudocode above in our proof using line numbers (L#).

Let’s prove the definition of the failure function by induction: that for a pattern p of
length l, f(j) = i is the largest integer i < j such that p1p2 . . . pi = pj−i+1pj−i+2 . . . pj .

Assume that this induction hypothesis is true for all f(k) such that k < j.

Proof. Base case: f(1) = 0. Empty string equality, if you will, but it checks out.

Induction step: Our algorithm compares pj with pf(j−1)+1 in L6 using the assignment
from L5. This splits our analysis into two cases:

• Case 1: pj = pf(j−1)+1

The L6 and L9 blocks do not get executed, and we continue to L12. By the induction
hypothesis, f(j − 1) = i is the largest i such that p1 . . . pi = pj−i+1 . . . pj . Since the
comparison from L6 ensures that the next character in p matches the character after
the j − 1th prefix, L12 assigns f(j) correctly.

• Case 2: pj ̸= pf(j−1)+1

The L6 loop finds the largest i such that{
p1 . . . pi = pj−i . . . pj−1 ith prefix matches (j − i)th suffix

pi+1 = pj next characters match

If such an i exists, the L6 loop will consider all possible i which satisfies the above
equalities. Note that f(k) is always less than k, so L6 will check these i from greatest
to least. Based on this ordering, it finds the largest such i. So L12 assigns f(j)
correctly.

If no such i exists, i eventually reaches 0 from L7. So L10 assigns f(j) correctly, as
the next characters do not match.

28

CSCI 1810 Fall 2022

In all cases, our algorithm assigns failure function values correctly. This concludes our
proof!

2.2.6 Proof of runtime for the failure function

What about the runtime of this algorithm? Let’s take a look at a brief informal proof using
amortized analysis.

Informal Proof. It looks like we have nested loops here. Although it’s apparent that the
L4 loop (pun not intended) runs in time linear in the length of p, the L6 loop is less clear.

Let’s examine i as a limited resource. With careful analysis, one can discover that i is
incremented by the combination of L4, L5, and L12. f(j) is set to i+ 1 in L12, and in the
next iteration of the L4 loop where j has been incremented, i is set to f(j− 1) in L5. Thus,
this combination results in a single increment to i.

One can also find that i only decreases in L7. In fact, we can say that i is decreased every
time the L6 block is executed. The converse is also true: that L6 is executed every time i
is decreased. So the total cost of L6 (over the entire algorithm, not within the L4 loop) is
proportional to the number of times i decreases.

The L4 loop can only run l−1 times, so L5 and L12 can only be executed l−1 times each.
Since theses lines control the increase of i, the cost of the L6 loop must be proportional to
the runtime of the L4 loop. Note that we’ve separated the total cost of L6 from the L4 loop,
so these time complexities are now additive!

O(l) (L4 loop) +O(l) (L6 loop) = O(l)

So, our algorithm’s overall time complexity is O(l), or linear in the length of the pattern!

2.2.7 Constructing a DFA for matching a pattern in a text

Recall that we denote our text by t and our pattern by p. We wish to construct a DFA
that recognizes the language Σ∗p, and which makes exactly one state transition per input
symbol.

Algorithm for DFA with language Σ∗p

Input: A pattern p = p1 . . . pl over Σ.
Output: A DFA M such that L(M) = Σ∗p.

We proceed in the following fashion:

1. Use the Failure Function algorithm for p.

2. Let M = (S,Σ, δ, 0, {l}) where l = |p|. Let S = {0, 1, . . . , l}.

3. Constructing δ:

(a) For j = 1 to l, we have δ(j − 1, pj) = j.

(b) For each a ∈ Σ, a ̸= p1, we have δ(0, a) = 0.

29

CSCI 1810 Fall 2022

(c) For j = 1 to l, for each a ∈ Σ and a ̸= pj+1, we have δ(j, a) = δ(f(j), a).

Question: Why do we want to think of the pattern p being at the end? Or, why don’t we
want a DFA for pΣ∗?

Sorin: Because we want to find the first exact occurrence!

Example. Let’s return to our earlier example for the failure function. We’re given a string
p = aabbaab. We computed the failure function last time, which is given by:

i 1 2 3 4 5 6 7
f(i) 0 1 0 0 1 2 3

By following the algorithm given above, we obtain the following DFA:

0 1 2 3 4 5 6 7a a b b a a b

b

b

a

a

b

b

a

a

2.3 The Burrows-Wheeler Transform

The Burrows-Wheeler Transform is a reversible string compression algorithm. Given an
input string, it can rearrange its characters into a sequence which often groups identical
characters together, allowing for the string to be represented in condensed notation. While
it doesn’t always achieve this perfectly, the benefit is that it incurs no additional space costs!
(Well, one character, but that’s negligible.) Let’s take a look at the steps and an example.

The Algorithm:

Given a string X = x1x2 . . . xn,

1. Add an end-of-string character to the string. We’ll often use $.

2. Generate all rotations of X$.

30

CSCI 1810 Fall 2022

3. Sort the rotations in lexicographical order. Typically, the end-of-string character
comes first.

4. From your sorted list of rotations R1, R2, . . . Rn+1, output the string formed by all
rn+1 characters (ending characters) in order.

Here’s an example. Suppose we have the string aardvark.

Above: An aardvark.

1. Add $ to the end of the string: aardvark$

2. Obtain all rotations: aardvark$→ ardvark$a→ rdvark$aa→ dvark$aar → vark$aard→
ark$aardv → rk$aardva→ k$aardvar → $aarkvark.

3. Sort these rotations:

$aardvark
aardvark$
ardvark$a
ark$aardv
dvark$aar
k$aardvar
rdvark$aa
rk$aardva
vark$aard

4. Obtain the output string from the last column: k$avrraad

And so we see that BWT (aardvark$) is k$avrraad!

You could imagine that if we wanted to store a string in the most efficient way possible,
one relatively simple approach is to represent any repeat strings as the repeat character,
followed by the number of its occurrences.

So our output string might be represented as: k$avr2a2d. Now, this might not appear
to improve anything. After all, our condensed output is 9 characters long. . . which was also
the length of our input string. . . which was also the length of the condensed version of our
input string: a2rdvark$. But you can already begin to see some beneficial effects! Notice
how the Burrows-Wheeler Transform grouped the r’s together, when they were separated
to begin with. On much longer strings, the space benefits will be much more apparent when
you can begin replacing repeats of length 3, 4, 5, and so on with 2-character condensed
representations!

31

CSCI 1810 Fall 2022

Ok, it’s great that we can save some space when storing the characters in these strings.
But what we really wanted to was to store aardvark$, not k$avrraad. How do we get our
original string back?

2.3.1 The Inverse Transform

Thankfully, the Burrows-Wheeler transform is reversible! This means that there exists
an inverse algorithm that takes any BWT output and recovers its original input! Let’s
introduce the steps and continue our aardvark example to see it in action.

The Algorithm:

Given a string Y = BWT (X) = y1y2 . . . yn,

1. Initialize a matrix where each row contains a character in Y

2. Sort the rows in the matrix in lexicographical order.

3. Append the contents of each row to the characters of Y . These strings become the
new contents of the matrix. (Alternatively, you can think of this as appending the
characters in Y to the front of each row)

4. Repeat 2 and 3 until each row is n characters long.

5. Sort the rows in lexicographical order.

6. Output the first row. Since our end-of-string character is lexicographically first, this
will be our original input with the end-of-string character in front! (Recall that this
is the last rotation we generated in the BWT algorithm.)

Let’s try this on k$avrraad.

First, we initialize our matrix:

k
$
a
v
r
r
a
a
d

Then, we sort:

$
a
a
a
d
k
r
r
v

32

CSCI 1810 Fall 2022

Add in our input characters to the front of the strings:

k $
$ a
a a
v a
r d
r k
a r
a r
d v

Sort:

$ a
a a
a r
a r
d v
k $
r d
r k
v a

Add our input in:

k $ a
$ a a
a a r
v a r
r d v
r k $
a r d
a r k
d v a

Sort:

$ a a
a a r
a r d
a r k
d v a
k $ a
r d v
r k $
v a r

Add our input in:

33

CSCI 1810 Fall 2022

k $ a a
$ a a r
a a r d
v a r k
r d v a
r k $ a
a r d v
a r k $
d v a r

...

Several sorts and additions later, we have:

k $ a a r d v a r
$ a a r d v a r k
a a r d v a r k $
v a r k $ a a r d
r d v a r k $ a a
r k $ a a r d v a
a r d v a r k $ a
a r k $ a a r d v
d v a r k $ a a r

Finally, we sort again:

$ a a r d v a r k
a a r d v a r k $
a r d v a r k $ a
a r k $ a a r d v
d v a r k $ a a r
k $ a a r d v a r
r d v a r k $ a a
r k $ a a r d v a
v a r k $ a a r d

Taking the first row, we remove the end-of-string character, and voila! We have recovered
aardvark, which was our original input to the Burrows-Wheeler Transform.

2.4 Suffix Trees

Suffix trees allow us to query strings in optimal time. In other words, using suffix trees, we
can solve problems like whether a potential substring is contained within a second string in
optimal time.

Suppose we have a string:
s = aababbb

Basic stringology: if a string has length n, then it will have n suffixes and n prefixes, and
thus O(n2) substrings (equivalent to picking two indices).

34

CSCI 1810 Fall 2022

We can construct the suffix tree Ts for the string s using the following algorithm:

1. Add a $ symbol to the end of s to denote the end of the string. The $ symbol will be
useful for indicating the ends of suffixes in the suffix tree.

2. Add a root node to Ts. Take the first suffix of s and add it to Ts as a path from the
root node to a leaf with label 1.

3. Take the next suffix of s and add it to Ts as a path from the root node to a leaf with
label 2, reusing nodes and edges already in the tree whenever possible.

4. Continue to add suffixes to the tree until all suffixes have been added, labeling each
leaf with the starting position of the suffix it represents in the string.

1

2

3

4

5

6

7

8

a

a

b

a

b

b

b

$

b

a

b

b

b

$

b

a

b

b

b

$

b

b

$

b

b

$

$

$

$

Suffix trees are deterministic finite automata that accept the language consisting of all
substrings of a string (or a set of strings). Think of the nodes of the tree as states, and
think of the edges of the tree as directed edges with symbols from our string (alphabet) on
them. Therefore, suffix trees allow us to check if a pattern p is present in a given string in
time O(|p|). We’ll denote the suffix tree associated to a string s by Ts.

How is this a DFA? Start parsing the input pattern and begin at the root node. At
each letter, check if we can advance to a subsequent (lower) node in the suffix tree. If we
can advance, then we continue. If we can’t advance, we instead transition to an absorbing
failure state. If we finish reading the input pattern and we are still in a node in the tree,
then we accept the pattern, indicating that the pattern is in the string. If we finish reading
the input pattern and we are in the failure state, then the pattern is not in the string.

We can make several modifications to this representation of a suffix tree to further opti-
mize this data structure.

35

CSCI 1810 Fall 2022

First, we notice that if we were to move down the leftmost branch in this tree, there’s
only one sequence of letters that the suffix tree accepts. So, instead of having so many
individual edges and internal nodes, we can concatenate them all. In fact, we can do this
for any subtree with one branch! Doing so creates a compact suffix tree. (Note: We
sometimes refer to suffix trees that have not reduced their internal nodes in this way as
expanded suffix trees.)

Once we have these multi-character edges, we can further optimize the way we store the
suffix tree. If we have the string used to construct the tree in memory, we don’t need to store
characters in our tree at all. Instead, we could replace edge labels with position indices. For
example, we can replace our long left-most edge with (2, 7). This modification allows us to
retrieve the exact substring we need to make comparisons without having to store the full
6-character subsequence in the tree. By modifying compact suffix trees in this way, we can
create position suffix trees for strings of length n that can be stored in O(n) space. In
contrast, both expanded and compact suffix trees require O(n2) space to store the entire
tree.

An additional improvement we can make to suffix trees is to add suffix links to a tree. A
suffix link is a special edge which connects an internal node v to another node w, where v
represents the string p and w represents the string p2:end.

Put another way, if v represents the string p = ab, where a is a character and b is a string,
then w represents b. A suffix link connects v to w.

Here’s the compact suffix tree for the example above:

1

2

3

4 5 6

7

8

a

ababbb$ b

abbb$

b

abbb$

bb$

b

b$ $

$

$

And here’s an example of a few (not all!) of the suffix links in our original expanded
suffix tree:

36

CSCI 1810 Fall 2022

1

2

3

4

5

6

7

8

a

a

b

a

b

b

b

$

b

a

b

b

b

$

b

a

b

b

b

$

b

b

$

b

b

$

$

$

$

One of these suffix links can even be included in our compact suffix tree. See if you can
figure out which one it is!

We can use suffix links to improve the runtime of our suffix tree construction algorithm
from O(n2) to O(n). If you are interested in learning about the algorithm for constructing
suffix trees in linear time, take CS182!

In summary, a suffix tree Ts is a data structure that takes as input a string s of length
n. It stores all the suffixes of s in an efficient way such that:

1. Ts stores the starting position of each suffix of s

2. Ts stores each substring of s

3. Each suffix of s can be thought of as a path label from the root node to some leaf,
and vice-versa.

4. Every leaf is labelled with the starting position of the suffix for which it is the endpoint
of the path label from the root.

5. Branching edges have different letters labelling them.

6. For any two suffixes Si and Sj of s, we can find their common prefix wi,j using the
suffix tree.

37

CSCI 1810 Fall 2022

3 Phylogenetic Trees

OTU = operational taxonomic unit. These are the building blocks of phylogenetic trees.
Here’s some examples: species, genes, genomes, gene regions (coding, non-coding, regulatory
regions), etc.

3 challenges with arranging into a tree:

1. Unequal rates of mutations across genomes—pick different animal from same species,
you might get different position in evolutionary tree.

2. Non-vertical evolution: evolutionary branching is very complex. We oversimplify in
our models. Things that mess up the tree structure are: recombinations, lateral gene
transfer.

3. Convergent evolution, and parallel evolution.

The challenge for phylogenetic reconstruction is to build the tree based on homology
(common ancestry), and not based on other similarity due other forces such as those listed
above.

3.1 Distance Methods

3.1.1 UPGMA Algorithm (updated 11/14/19)

UPGMA = Unweighted Pair Group Method with Arithmetic Mean.

Input: a set of sequences ({s1:n}) and a matrix of distances between each pair of se-
quences (D = {di,j}).

Output: an ultrametric phylogenetic tree which reveals the evolutionary history of the
input sequences.

Goal: hierarchically merge pairs of clusters until only one remains.

We construct the tree upwards. Each new node is added above the others, and edge
lengths are obtained as the difference in height between the nodes of the edge.

Let Sp and Sr be two sets (clusters) of sequences from our input set of sequences. Let
D = {di,j} be the set of pairwise distances between si, sj from our input set. We extend
di,j to clusters of sequences (i.e. the distance between Sp and Sr). We have:

d̃p,r =
1

|Sp||Sr|
∑
s∈Sp

s′∈Sr

ds,s′

In words, d̃p,r is the average distance between pairs of sequences from each cluster.

Next, if Sl is the union of Sp and Sr, i.e Sl = Sp ∪Sr. Let Sm be another cluster.
We then have:

d̃m,l =
d̃p,m|Sp|+ d̃r,m|Sr|
|Sp|+ |Sr|

The proof of this formula is left as an exercise to the reader.

38

CSCI 1810 Fall 2022

When two clusters are merged, the height of the new subsuming cluster is computed as
one-half the distance between the clusters,

hSl
=
dp,r
2
,

and the edge lengths to the two contributing clusters are computed as

hSl
− hSp

,

hSl
− hSr

.

We present pseudocode for the hierarchical clustering below:

1: function UPGMA Algorithm({s1, . . . , sn}, D = {di,j})
2: while multiple distinct clusters remain do
3: find two clusters with minimum distance
4: union these two clusters into a single cluster
5: compute distances between the new cluster and each other cluster
6: compute tree height of the new cluster
7: compute edge lengths between each of the initial two clusters and the new cluster
8: end while
9: end function

3.1.2 Neighbor Joining

UPGMA assumes that we have a molecular clock universal for all branches in the evolu-
tionary tree. In particular, note that the time at each leaf is the same—this is because the
distance from root to leaf is equal.

UPGMA assumes the ultrametric condition, which can be formally stated as the 3-point
condition: for every 3 sequences si, sj , sk, their pairwise distances dij , dik, djk are either all
equal, or two are equal and the third one is smaller.

The neighbor joining algorithm requires a weaker assumption of the additivity condition:
Given a tree, we say that its edge lengths are additive if the distance between any pairs of
leaves is the sum of the lengths of the edges on the unique path connecting them.

We can formally express this condition as the 4-point condition: for every 4 sequences
si, sj , sk, sl, if you consider the pairwise distances dij , dik, dil, djk, djl, dkl, then either all
three of dij +dkl, dil+djl, dik+djl are all equal or two are equal and greater than the third.

Note that additivity is required by the UPGMA algorithm as well. If additivity holds
but universal molecular clock fails, then we can still construct a phylogenetic tree using the
neighbor joining algorithm.

Input: set of m sequences and a pairwise distance matrix.

Given: A tree T with additive edge lengths.

Compute: Reconstruct T from pairwise distances of the input sequences.

39

CSCI 1810 Fall 2022

Informally, find a pair of neighboring leaves, say i and j from the list of leaves that have
parent l. Remove i and j from the list of leaves and add l to the current list of leaves. New
node l: compute pairwise distances from l to all other nodes.

But how do we compute this new pairwise distance? We use the following formula: for
every leaf m we have:

dlm =
1

2
(dim + djm − dij)

Continue this way until only two nodes are left, and then compute the distance on the
final branch.

So, how do we find a pair of “neighboring” leaves?

Caveat: Picking i, j with dij minimal is not good enough—minimal distance pair may
not be neighboring leaves.

So, we modify d = {dij} by constructing a new pairwise distance D = {Dij} where
Dij = dij − (ai + aj) where we define

ai =
1

|L| − 2

∑
l∈L

dil

where L is the list of leaves, and |L| is the size of L.

Here’s the pseudocode for reference:

1: function Neighbour Joining({s1, . . . , sn}, {dij})
2: L← T
3: Dij ← dij − (ai + aj) ▷ ai =

1
|L|−2

∑
l∈L dil

4: while |L| > 1 do
5: Pick (i, j) for which Di,j is minimal.
6: Define a new node l and set dlm = 1

2 (dim + djm − dij) for all m ∈ L
7: Add l to T with edge lengths dil =

1
2 (dij + ai − aj),and djl = dij − dil

8: Remove i, j from L and add l to L
9: end while

10: end function

4 Hidden Markov Models

Quick introduction to the problems:

• Evaluation or “model scoring” problem.

Given: θ, λ, compute P(θ | λ) i.e. the probability of observing the observed sequence
θ in the HMM λ.

• The “ decoding” problem or uncovering the hidden part.

Given: θ, λ, compute a sequence of states in λ that best explains the observed sequence
θ

40

CSCI 1810 Fall 2022

• Problem 3: Take CS182 if you’re interested. It’s called the “learning problem”.

Given θ, compute the parameters of the model λ such that P(θ | λ) is maximized.
(solution to this is the Expectation Maximization algorithm)

Quick review: The Elements of a HMM

1. N =# of states S = {S1, . . . , SN}. Let qt note the state at “time” t.

2. M is the number of observed symbols {v1, . . . , vm}.

3. The state transition probability distribution is A = {aij | aij = P(qt+1 = sj | qt = si}.

4. The observation symbols probability distributionB = {bj(k)} where bj(k) = P(vk at time t |
qt = sj)

5. The initial state distribution π = {πi} where πi = P(q1 = si).

Solution to Problem 1:

We want to calculate the probability of observing θ = θ1 . . . θt given the model λ, i.e.
P(θ | λ).

The probability of observing the observed sequence θ in the sequence of statesQ = q1 . . . qt
is:

P(θ | Q) =

t∏
i=1

P(θi | qi) = bq1(θ1) . . . bqt(θt)

We also have:
P(Q) = πq1aq1q2 . . . aqt−1qt

using the transition matrix.

By the definition of conditional probability:

P(θ,Q) = P(θ | Q) · P(Q)

By marginalizing, we get:

P(θ) =
∑
all Q

P(θ,Q)

=
∑
all Q

P(θ | Q) · P(Q)

=
∑

all q1,...,qt

bq1(θ1) . . . bqt(θt)πq1aq1q2 . . . aqt−1qt

Now, how many such permutations of q1, . . . , qt exist? We have a total of NT such
sequences—an exponential number of possible sequences. So, we will use dynamic program-
ming to solve this problem.

41

CSCI 1810 Fall 2022

4.1 The Forward-Backward Algorithm

This algorithm will run in O(N2T) time.

The forward algorithm: Define the forward variable to be αt(i) = P(θ1 . . . θt, qt = si), i.e.
the probability of observing the prefix θ1, . . . , θt until time t and being in state si at time t.

Three steps:

1. Initialization: α1(i) = πibi(θ1) for all 1 ≤ i ≤ N .

2. Recurrence:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(θt+1) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

3. Termination:

P(θ | λ) =
N∑
i=1

αT (i)

Here’s another algorithm to solve this problem: the backward algorithm. Let βt(i) be
the backward variable, where βt(i) = P(θt+1 . . . θT |qt = si), i.e. the probability of observing
the suffix θt+1, ..., θT given that the state at time t is si.

• Initialization: βT (i) = 1, 1 ≤ i ≤ N

• Recurrence: βt(i) =
∑N

j=1 aijbj(θt+1)βt+1(j), 1 ≤ i ≤ N .

• Termination: P(θ | λ) =
∑N

i=1 β1(i)πibi(θ1)

Additionally, we can combine the forward and backward variables to compute
P(qt = si|θ), i.e. the probability of being in state si at time t given the entire observation
sequence θ, which is computed by the forward-backward algorithm:

P(qt = si|θ) =
P(qt = si, θ)

P(θ)

=
P(qt = si, θ1...θt)P(θt+1...θT |qt = si)

P(θ)

=
αt(i)βt(i)

P(θ)

4.2 The Viterbi Algorithm

4.2.1 Problem 1: The Evaluation Problem

Given: Θ = θ1 . . . θT ; λ = (A,B, π)
Compute: P (Θ |λ)
Updated inferred parameters: λ = (A,B, π)
Prefer λ such that P (Θ |λ) > P (Θ |λ)

42

CSCI 1810 Fall 2022

4.2.2 Problem 2: The Decoding Problem

Given: Θ, λ
Compute: a corresponding sequence of states Q = q1 . . . qT which is optimal in some mean-
ingful sense (i.e., “best explains” the observed sequence)
The “best explanation” is Q for which P (Q |Θ) is maximal (i.e., one path of states). The
Viterbi algorithm can be used to solve Problem 2.

4.2.3 Solution to Problem 2

We seek max(P (Q |Θ)). Since P (Q,Θ) = P (Q |Θ)P (Θ) and P (Θ) is some nonnegative
constant, we can equivalently maximize P (Q,Θ) (which is usually easier).

4.2.4 The Algorithm

δt(i) is the best score (highest probability) along the path of states which accounts for the
first t observations and ends in state si at time t:

δt(i) = max
q1...qt−1

(P [θ1 . . . θt, qt = si])

ψ is the backtracking matrix (akin to traceback pointers for the DP alignment table).

Initialization:

δ1(i) = πibi(θ1), 1 ≤ i ≤ N

ψ1(i) = 0

Recurrence:

δt(j) = max
1≤i≤N

[δt−1(i) · aij] · bj(θt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

ψt(j) = argmax
1≤i≤N

[δt−1(i) · aij]

Termination:

p∗ = max
1≤i≤N

[δT (i)]

q∗T = argmax[δT (i)]

Backtracking :

q∗t = ψt+1(q
∗
t+1), t = T − 1, . . . , 1

43

	Sequence Alignment
	Global Alignment
	Local Alignment
	Alignment with Gaps
	Statistics and Alignment
	Connections with Graph Theory

	Combinatorial Pattern Matching
	Finite Automata and Regular Expressions
	The Knuth-Morris-Pratt Algorithm
	The Burrows-Wheeler Transform
	Suffix Trees

	Phylogenetic Trees
	Distance Methods

	Hidden Markov Models
	The Forward-Backward Algorithm
	The Viterbi Algorithm

